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Abstract

We present a novel, flux-conserving, asynchronous method for the explicit time integration of multi-scale, flux-conser-
vative partial differential equations with source terms. Unlike the conventional explicit and implicit integration schemes, it
is based on a discrete-event simulation paradigm, which describes time advance in terms of increments to physical quan-
tities and causality rules rather than time stepping. This method exerts self-adaptive control over local update rates of
solution by predicting and correcting changes to simulation variables in accordance with local physical scales. The dis-
crete-event simulation paradigm is independent of the underlying spatial mesh and thus can be incorporated into
block-structured and unstructured mesh refinement techniques. The effectiveness and robustness of the new method is
demonstrated on a number of one-dimensional, uniform mesh models based on diffusion–convection–reaction equations.
The event-driven integration reduces numerical approximation errors due to large local time derivatives, prevents explosive
numerical instabilities in locally super-Courant calculations and automatically reduces the CPU overhead associated with
stiff terms and inactive regions in computation space.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple temporal and spatial scales commonly occur in large-scale, non-linear physical systems. Methods
for their numerical treatment overcome enormous challenges and drive advances in simulation technology [1].
Many scientific and engineering applications involve solution of time-dependent flux-conservative partial dif-
ferential equations (PDEs). Numerical techniques for such systems commonly assume that the governing
equations and simulation variables are properly discretized in space on a suitable spatial mesh composed
of discrete control elements (also referred to as ‘‘cells’’). A mesh can be either uniform or adaptive to solution
spatial scales. The discretized equations are normally ‘‘time stepped’’, i.e., solution values in all mesh elements
are synchronously updated in discrete time intervals determined by the choice of a constant or variable global
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time increment, Dt. Numerical time-stepping integration techniques for PDEs generally fall into two catego-
ries: explicit and implicit schemes. In the explicit schemes, all unknown variables are computed at the current
time level from quantities already available (computed in the past). The implicit schemes employ unknown
variables for evaluating (some or all) spatial terms of the underlying finite-difference equations, which leads
to a set of coupled linear or non-linear equations for each discrete solution variable. Below we briefly discuss
limitations of these traditional formulations.

The Neumann stability analysis of explicit schemes leads to the famous Courant–Friedrichs–Levy stability
criterion, Dt < (Dx/V)min (also referred to as the Courant or CFL condition), where V and Dx are the local
physical speed and mesh size, respectively. This condition guarantees that the explicit time integration always
resolves the fastest transient change in the system state. In practice, physical systems can develop multiple
time scales either due to different (multi-physics) processes or spatial inhomogeneities. Numerical difficulties
associated with multi-physics issues are usually addressed by using time-averaged descriptions for fast pro-
cesses or sub-cycling disparate processes with different update frequencies [1]. On the other hand, multiple
time scales associated with spatial inhomogeneity may be a consequence of either a specific problem set-
up (e.g., non-uniform external factors, initial conditions) or inherent non-linearities in the governing equa-
tions. As a result, to avoid explosive numerical instabilities, explicit time-stepping integration techniques
have to employ the minimum time-step size typically determined by the most restrictive (global) CFL con-
dition in the system. In contrast to this, unconditionally stable implicit methods introduce some sort of
numerical smoothing, which enables use of larger time increments. Alternatively, implicit–explicit formula-
tions [2] treat only stiff (fast evolving) terms of the model equations implicitly and approximate the other
terms in an explicit fashion.

With the advent of fast iterative Krylov–Newton–Schwartz algorithms, implicit (as well as implicit–explicit)
formulations have quickly become important tools for studying multi-scale phenomena described by non-
linear PDEs, e.g., radiation diffusion [3–6], reaction–diffusion [7,8], magnetohydrodynamics [9] and radiation
hydrodynamics [10] systems. In order to correctly describe the global system evolution, implicit solvers employ
physics-based strategies for selecting suitable time-step sizes that are commensurate with the dominant time
scale in the problem. CPU-efficient time-step sizes can often be obtained by applying a Courant condition
[4]. Despite recent progress in this field, large-scale implicit models demonstrate significant CPU costs resulting
from a large number of iterations necessary to converge non-linearities to within small tolerances. More
importantly, implicit integrations conducted with large time increments are unable to correctly represent local
physical phenomena with characteristic process frequencies higher than the inverse of the time-step size. These
issues render them inefficient for modeling long-time behavior of large-scale systems (e.g., the Earth’s magne-
tosphere, climate models, laser–plasma interactions, etc.), where one typically needs to resolve strongly vary-
ing time scales with equal accuracy over long periods of time.

To address the above problems, a number of asynchronous explicit time-stepping approaches have been
developed for flux-conservative systems. These can be classified into the following groups:

1. Adaptive mesh refinement. Berger and Oliger [11] proposed the adaptive mesh refinement (AMR) technique
for block-structured meshes. In this technique, refined (daughter) meshes overlap regions covered by the
coarser (parent) mesh so that the global (composite) mesh is made of a hierarchy of nested levels of logically
rectangular patches. Each patch is still updated with a constant time increment restricted by the patch cell
size and the maximum velocity magnitude. In the case of explicit algorithms for conservation laws, the
inter-patch synchronization involves only corrections to the coarse mesh solution: the coarse-mesh data
is replaced by the volume-weighted average of the fine-mesh data and the fluxes at the fine–coarse interfaces
are corrected by interpolating the fine-mesh solution values. This technique has successfully been applied to
simulate physical processes in various inhomogeneous media [12–15].

2. Adaptive time refinement. This method [16,17] implements local time stepping by allowing solution values in
different mesh elements (cells) to be updated with different time increments, which are usually selected to be
fractions of the global time-step size in order to satisfy local CFL conditions. Special care is taken to
preserve flux conservation across cell interfaces in all updates. This ‘‘telescopic’’ method requires ad hoc
strategies for calculation of the global time increment at each time step. They may become difficult to imple-
ment for highly inhomogeneous or strongly non-linear large-scale systems, where fast solution updates may
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invalidate initial assumptions made for slower evolving quantities (e.g., make their local CFL conditions
more restrictive). In addition, this technique does not provide built-in recipes for the treatment of inactive
regions.

3. Domain decomposition. This approach has been used to dynamically track action potential (described by a
parabolic equation) in an excitable heterogeneous biological medium [18]. The solution is integrated by
assigning individual time increments (multiples of the minimum time step size) to different sub-domains.
The sub-domains are sorted by their update times with the use of a priority queue and an explicit integra-
tion method advances the solution in each ‘‘active’’ sub-domain. Boundary information is obtained by time
interpolation of fluxes at sub-domain interfaces. This procedure violates flux consistency at sub-domain
boundaries and therefore, an additional implicit procedure is applied to obtain an accurate global solution.
Another asynchronous domain decomposition technique is based on a combination of implicit and explicit
schemes [19].

4. Variable time-stepping method. In this method [20] time-step size is a continuous function of space. The
order of cell updates is determined through a binary tree scheduling mechanism and individual time incre-
ments are chosen to follow the fastest local time scales. As in the previous (domain decomposition)
approach, this method uses time interpolation for flux computation, which violates local conservative prop-
erties of the underlying model.

5. Adaptive time–space discretization. This technique (see [21] and references therein) introduces an extra finite
dimension to the computational model: a separate temporal mesh. A discontinuous Galerkin solution is
constructed in time–space by adapting the duration of each element to the local degree of spatial mesh
refinement. In addition to introducing an extra time dimension, this method does not seem to present clear
conditions for enforcing stability and defining efficient adaptive strategies on irregular space–time domains.

The existing adaptive techniques can significantly reduce CPU load in many problems of interest. Among
these techniques, block-structured AMR is the most developed and widely used approach. This powerful and
robust methodology significantly increases computational efficiency for many evolution problems [12–15]. In
AMR applications, the maximum time-step size in each refinement patch is still limited by the local CFL con-
dition, which may result in very restrictive configurations for problems where adaptation has to be made to
non-linear physical processes with irregular or fast changing temporal and spatial scales (i.e., turbulent or
strongly coupled reactive systems). More importantly, at the beginning of every global time step, all asynchro-
nous time-stepping algorithms require global information for calculating the appropriate set of time steps to
be taken in each patch (or element). To summarize, both the explicit and implicit time-stepping schemes share
two important features that generally limit their efficiency:

1. At every time level, they update the whole system state without due regard to actual changes to simulation
variables. In other words, the time-stepping models utilize the CPU resources uniformly, including parts of
the computation space where no significant modification of system state variables (a.k.a information) is pro-
duced during the calculation. Moreover, the time-stepping methods are not ‘‘intelligent’’ enough to predict
when and where the underlying model will generate such changes. As a result, to avoid numerical instabil-
ities, the explicit schemes have to ‘‘blindly’’ assume that meaningful information is always available for pro-
cessing within the stencil neighborhood of each cell (i.e., a group of cells used to approximate the spatial
terms for a given cell). This lack of ‘‘intelligence’’ inevitably results in imposing a CFL-type restriction
on the time step size.

2. In multi-scale problems (where the solution rate of change varies considerably throughout the system), time
stepping inevitably results in advancing the system state with different degrees of accuracy in different parts
of computation domain.

Recently a new time integration approach has been applied to equations of non-linear elastodynamics [22].
It is based on a discrete spacetime form of Hamilton’s variational principle. Compared to the variable time-
stepping method [20], this algorithm permits the selection of independent time steps in each mesh element so
that the local time steps do not bear an integral relation to each other. The time advance is done by organizing
computational elements into a priority queue based on their precomputed update times. The algorithm
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permits updating each subsystem with a frequency dictated by its natural timescale, subject to solvability of
the local time steps [22]. However, this approach is only applicable to Hamiltonian systems in which the
Lagrangian is expressible as a sum of component sub-Lagrangians.

In this paper we present a self-adaptive, flux-conserving, asynchronous approach to the explicit time inte-
gration of flux-conservative equations with source terms. Unlike the asynchronous variational integration
technique [22], this method is based on discrete-event simulation (DES) methodology [23–27], which is appli-
cable to more general dynamical systems. It offers the following advantages over the traditional time-driven
simulation (TDS) techniques:

1. Robustness (stability and accuracy). The DES integration algorithm exerts adaptive, local control over the
numerical update rate of solution. This reduces integration errors associated with large time derivatives and
prevents explosive numerical instabilities.

2. Performance efficiency. Event-driven updates advance spatially distributed physical quantities asynchro-

nously, in accordance with their natural temporal scales. This removes the global CFL restriction and elim-
inates the CPU overhead associated with idle (informationless) computation. In this sense, the concept of
DES is similar to ideas widely exploited in video and audio data compression algorithms.

The remainder of the paper is structured as follows. In Section 2, we summarize basic ideas of the event-
driven methodology for the time integration of flux-conservative equations (solution of PDEs in non-conser-
vation form is not discussed in this paper). The DES method is described in detail in Section 3. Its application
to a non-linear diffusion–advection–reaction equation in one dimension is presented in Section 4. We discuss
results from test problems in Section 5 and present our conclusions in Section 6.

2. Discrete-event simulation

Discrete-event (or event-driven) simulations have their origin in operations research, management science,
war games and telecommunications [24,25]. More recently, DES methodology has been extended to modeling
simple continuous systems [26,27] and electrostatic plasma kinetic interactions [23].

In a discrete-event simulation, the temporal evolution of a global system is modeled by allowing the system
to ‘‘jump’’ from one state to another at discrete moments in simulated time upon the occurrence of an ‘‘event’’,
which represents an effective unit of information [24,25]. For example, typical events in a network simulation
may represent arrival of a message at some node, forwarding a message to another node, etc. From a program-
ming standpoint, each event is a simulation object characterized by a process function (a method for changing
the object state) and a time stamp (a point in simulated time when the process function is to be called). Sequen-
tial DES programs typically operate with the following data structures [23–25]:

1. The state variables. These variables describe the instantaneous state of the system.
2. The event list (queue). This is a priority queue containing all pending events that have been scheduled but

have not yet been executed. The event list preserves causality by sorting all events by their time stamps in
non-decreasing order so that the time stamp of the top event is always at least as large as the current sim-
ulation time.

3. The simulation clock. This data structure corresponds to the main loop of the traditional time-stepping sim-
ulation. The clock indicates how far in simulated time the discrete-event simulation has progressed. The
actual loop of the DES program (the engine) repeatedly removes the top (smallest time-stamped) event from
the event list and processes that event (Fig. 1). Processing an event may result in retracting previously
scheduled events (i.e., removing them from the list of pending events) and scheduling new events.

In DES terminology, each spatial cell is assigned a number of discrete, time-dependent ‘‘states’’ character-
ized by different simulation variables. Each state ‘‘schedules’’ a unique event by delaying the execution of its
process function until its predicted process time (Fig. 1). If the delay is infinite the state is said to be ‘‘idle’’.
Therefore, at any point in simulated time the number of pending events for each cell can never exceed the total
number of its states.



Fig. 1. Control flows in typical time-stepping and event-driven simulation models.
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A phenomenological discrete-event approach was developed to simulate linear advection, diffusion and
wave propagation [26]. That work independently introduced some of the concepts presented in this paper
but did not offer a general methodology for the solution of flux-conservative equations.

The concept of event-driven time integration can be explained as follows. Suppose a quantity, f (e.g., a dis-
crete field value or a particle) is integrated in time by solving an ordinary differential equation, df/dt = R(f).
Then its individual measure of time advance, Dtf = Df/|df/dt| can be expressed in terms of a physically mean-
ingful information unit, Df and its current rate-of-change, df/dt. In the philosophy of DES, f is considered to
have been ‘‘processed’’ only when a change to its previous state (a.k.a. information) is found to exceed the
minimum amount of information Df (same as the ‘‘quantum’’ value in [26,27]). As we show below, this pos-
tulation leads to an algorithm where the accuracy of time integration can always be adaptively adjusted in
accordance with local time scales. As a bonus, informationless (‘‘idle’’) parts of the system (where df/
dt � 0) ‘‘warp’’ through simulated time to the extent that their local time increments become infinite.

Naturally, a successful application of this philosophy to the time integration of general flux-conservative
equations must satisfy one important caveat: asynchronous time advance must produce a consistent (converg-
ing) numerical solution and preserve conservation laws embodied by the underlying equations. Higher order
explicit time-stepping schemes (e.g., Runge–Kutta algorithms) are usually based on some sort of a predictor–
corrector approach, i.e., they pre-advance physical quantities in time (‘‘predictor’’) and carry out the final step
with time-centered spatial terms (‘‘corrector’’). These techniques are known to produce accurate solutions
when the time-step size is small enough to meet the numerical stability and accuracy constraints (usually it
is set to be a fraction of the global CFL-limited value but additional constraints may arise when modeling
systems with sources).

In contrast to the traditional time-stepping methodology, the DES paradigm is based on applying a ‘‘self-
adaptive’’ predictor–corrector scheme to each state of the global computational model. For instance, given the
current rate of change df/dt for state f at time t, the DES predictor schedules a corresponding event, e, to be
executed at the future time, te = t + Df/[df/dt], at which f is predicted to change by the ‘‘target’’ increment Df.
Note that Df can be either preset to be constant during the simulation or automatically selected by the
predictor algorithm based on the current state condition (see below). At this stage one assumes that f ‘‘ballis-
tically’’ evolves in simulated time (i.e., df/dt remains unchanged). The DES corrector is responsible for mod-
ifying the predicted rate of change and processing (‘‘waking up’’) the state earlier than its scheduled process
time, should the conditions used to predict its ballistic trajectory undergo a significant change. Therefore, the
state update rate is constrained by a set of threshold values and dynamic causality rules, i.e., the system
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employs ‘‘self-intelligence’’ to predict and (if necessary) correct its behavior, as opposed to being forcefully
‘‘time-stepped’’. This ‘‘self-adaptive’’ paradigm guarantees that self-consistent computation always takes place
when required by the governing laws. It can effectively prevent explosive numerical instabilities associated with
growing errors in explicit schemes due to inconsistent updates.

Computational systems based on hyperbolic or parabolic equations are often modeled with equations in
conservation form, i.e., expressed in terms of source and flux functions. As mentioned above, numerical pres-
ervation of the underlying conservation laws is an important aspect of any numerical algorithm for such sys-
tems. The synchronous explicit schemes automatically update adjacent cells with identical fluxes. On the other
hand, implicit solvers commonly employ iterative techniques, which may not always satisfy finite differences to
within round-off errors. The presence of residual errors is equivalent to introducing extraneous fluxes not
accounted for by the governing equations and may result in a severe degradation of conservative properties
unless the convergence criterion explicitly takes this into account. By the same token, non-conservative, asyn-
chronous methods for the time integration of flux-conservative equations may generate inconsistent solutions.
In the next section we present a technique that effectively resolves this issue.

3. Flux-conservative DES algorithm

3.1. Problem formulation

For simplicity, in this paper we focus on solving a one-dimensional, scalar, flux-conserved equation with a
source term:
Fig. 2.
defined
‘‘virtua
i + 1.
of
ot
þ o

ox
Uðf ; xÞ ¼ Sðf ; xÞ. ð1Þ
Here f(x) is the solution of interest on the domain, x 2 [0,L], U(f,x) and S(f,x) are the flux and source func-
tions, respectively. The spatial discretization of Eq. (1) on a uniform cell-centered mesh, xi = (i + 1/2)Dx

(Dx = L/N, i = 0, . . . ,N � 1) is shown in Fig. 2.
In general, we assume that a linear combination of Dirichlet and Neumann boundary conditions is applied

at the domain ‘‘ghost’’ cells (i = �1,N):
The spatial discretization and asynchronous time integration of Eq. (1). The solution variables fi and source term values Si are
at integer (cell-centered) locations, xi. The flux variables Ui + 1/2 are defined at half-integer (node) positions, xi + 1/2. Note that the

l’’ (synchronization) update of solution fi and flux Ui + 1/2 at time ti + 1 is a result of processing an update event in neighboring cell
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f�1 ¼ 2rL þ cLf0; f N ¼ 2rU þ cUfN�1; ð2Þ

where rL, rU, cL, cU are free parameters and subscripts L, U refer to the lower and upper domain boundaries,
respectively. Let fi represent the local solution in cell i, last updated at time ti. Then the solution ~f i at the cur-
rent simulation time, tclock can be obtained with a forward Euler integrator:
~f i ¼ fi þ Ris; ð3Þ

where s = tclock � ti is the local time increment and
Ri ¼ Si � ðUiþ1=2 � Ui�1=2Þ=Dx. ð4Þ
At the start-up time, tclock = 0 the simulation model is initialized as follows: (i) all system variables {fi,Si,Ui + 1/2,Ri}
are initialized and ti = tclock, (ii) the proper events are scheduled for execution in the active interior cells (see
Section 3.4). In addition, for each state fi, we introduce a ‘‘flux capacitor’’ variable, dfi (dfi(tclock = 0) = 0). This
auxiliary variable keeps track of the net change to fi occurred since the time of its most recent scheduling oper-
ation (‘‘predictor’’). We also assume that each state, in principle, can be assigned an individual ‘‘target’’ incre-
ment, Df tr

i . An algorithm for selecting local target increments is described in Section 4.2.
An event-driven integration (Fig. 1) is carried out by continuously applying the following three computa-

tion phases (Sections 3.2–3.4) until the global simulation clock is advanced past the simulation finish time, Tsim

(tclock > Tsim).

3.2. Event processing

1. Select the event with the smallest timestamp, te and let tclock = te. Identify the ‘‘active’’ cell p, corresponding
to the event being processed.

2. Obtain the up-to-date solution ~f p using Eq. (3): ~f p ¼ fp þ Rpðtclock � tpÞ. Let tp = tclock.
3. Zero out the flux capacitor variable: dfp = 0.
4. For each neighboring cell s = p ± 1 call the event synchronization procedure (Section 3.3, see also Fig. 2).
5. Schedule a new event for cell p (Section 3.4).

3.3. Event synchronization

1. If this cell s is a not boundary cell, then proceed to step 2. Otherwise, apply an appropriate boundary con-
dition (Eq. (2)), execute step 5 of this phase and return.

2. Let Df ” Rs(tclock � ts). Update the local flux capacitor (Eq. (3)): d~f s ¼ dfs þ Df .
3. Update the local solution (Eq. (3)): ~f s ¼ fs þ Df . Let ts = tclock.
4. If jd~f sjP Df tr

s , then retract the corresponding pending event, execute steps 3–5 of the process function for
state s (see Section 3.2) and return. Otherwise, proceed to step 5.

5. Update the flux ~UðpþsÞ=2 across the interface between this cell (s) and the cell that initiated the synchroniza-
tion call (p), using the up-to-date solution values, ~f p and ~f s.

6. Update ~Rs (Eq. (4)) using the latest approximations, ~UðpþsÞ=2 and ~Ss.

3.4. Event scheduling

1. Update ~Rp (Eq. (4)) using the latest approximations, ~Up�1=2 and ~Sp.
2. Compute the local target increment Df tr

p (optional, see Section 4.2).
3. Compute the next event time delay, Dtp ¼ Df tr

p =j~Rpj.
4. Schedule the next event for state p at the process time, te = tclock + Dtp.

It should be emphasized that the DES time-integration algorithm possesses the following important
properties:
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1. For any given pair of adjacent cells i, i + 1, the same discrete (piecewise constant in time) flux Ui + 1/2 is used
to compute time advances in both cells at any point in simulation time. As a result, the numerical flux inte-
grals are always conserved to within computer precision round-off errors (provided all cells have been inte-
grated to the same time).

2. A proper spatial range of locally synchronous corrections in the neighborhood of an active cell is self-
adaptively determined through a sequence of synchronization updates (Section 3.3). Note that step 4 of Sec-
tion 3.3 for a cell being synchronized takes into account changes to its local solution due to updates in the
neighboring cells occurred since this cell was last scheduled. For the end cells in the synchronization range,
this procedure may result in obtaining fluxes through the different faces at different times. However, since
this flux inaccuracy is restricted to �O(Df), it can only lead to a numerical approximation error �O(Dt),
which is consistent with the temporal approximation order of Eq. (3).

3. The synchronization updates compute the fluxes through the synchronization faces only. In multi-dimen-
sional problems the majority of CPU time is spent on flux computation. Therefore, the synchronization-
driven (‘‘virtual’’) calculations will be much less CPU consuming than the event-driven updates.

4. Diffusion–convection–reaction equation

Stiff (multi-scale) diffusion–convection–reaction equations form foundations of many computational mod-
els in various scientific disciplines [2,3,7,20]. As we show below, the self-adaptive DES algorithm is a viable
alternative to the time-stepping techniques for the numerical integration of such systems.

4.1. Flux discretization

We represent the flux function in Eq. (1) as a sum of non-linear diffusion and linear advection
components:
Uðf ; xÞ ¼ Ud þ Ua; ð5Þ

Ud ¼ �Dðf ; xÞ of
ox
; Ua ¼ uf ðxÞ. ð6Þ
Here u > 0 is a constant advection velocity and D(f,x) is a generally variable diffusion coefficient. The diffusion
component of flux Ud is discretized in space with the usual central scheme:
Ud;iþ1=2 ¼ �Diþ1=2

fiþ1 � fi

Dx
; Diþ1=2 ¼ Dðfi; fiþ1; xiþ1=2Þ. ð7Þ
The advection flux Ua is handled via the first-order upwind scheme:
Ua;iþ1=2 ¼ uf i. ð8Þ
Note that scheme (8) is known to be very diffusive and chosen here for its simplicity. More appropriate
schemes will be considered in the future. Using Eqs. (5), (7) and (8) we rewrite Eq. (4) in the following form:
Ri ¼ Si þ
Di�1=2

Dx2
þ u

Dx

� �
fi�1 �

u
Dx
þ Di�1=2 þ Diþ1=2

Dx2

� �
fi þ

Diþ1=2

Dx2
fiþ1. ð9Þ
A standard stability analysis of Eqs. (3) and (9) results in the following local CFL condition:
si 6 sCFL
i ¼ 1

u=Dxþ ðDi�1=2 þ Diþ1=2Þ=Dx2
. ð10Þ
For the interior cells located next to the domain boundaries (xi = Dx/2,L � Dx/2) expression (10) is modified
by taking into account boundary conditions (2):
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s0 6 sCFL
0 ¼ 1

ð1� cLÞu=Dxþ ð1� cLÞD�1=2=Dx2 þ D1=2=Dx2
; ð11Þ

sN�1 6 sCFL
N�1 ¼

1

u=Dxþ ð1� cUÞDN�1=2=Dx2 þ DN�3=2=Dx2
. ð12Þ
Incidentally, the CFL condition guarantees positivity of all coefficients in the explicit scheme described by Eqs.
(3) and (9). Therefore, if the solution is constrained by conditions (10)–(12), then the above scheme satisfies the
maximum (monotonicity) principle, which automatically preserves solution non-negativity, fi P 0.

4.2. Target increment control

As mentioned above, the algorithm described in Sections 3.2–3.4 is not limited to the use of a constant value
of Df. Different strategies for determining local values of Df may influence both the global accuracy and CPU
performance of DES integration. In particular, for models with physically smooth, non-negative solutions,
one should be concerned with the preservation of solution monotonicity and non-negativity (we define the lat-
ter as fi P �e, where e is a positive constant taken to be smaller than the typical numerical precision round-off
error). As was previously noted [23], the satisfaction of the local CFL condition is not necessary for numerical
stability as long as one properly controls propagation of discrete information on the mesh. Indeed, in the
extreme case one can set event delays, s �1 for certain states, effectively deactivating them ‘‘on-the-fly’’ with-
out causing stability problems. However, in order to preserve both the solution monotonicity and numerical
non-negativity, and take a full advantage of the local (asynchronous) nature of DES updates, one needs to
specify a mechanism for selecting proper local target increments Df tr

p (step 2 of Section 3.4). Below we describe
a technique that satisfies these criteria.

Let fmin, fmax the minimum and maximum solution values computed in the stencil-wide neighborhood of
the active cell p. Then step 2 of the event scheduling procedure (Section 3.4) may be carried out as follows
(Dfmax, xCFL, kmin, xmin are control parameters described below):

1. Compute Df CFL
p ¼ jRpjxCFLsCFL

p .
2. If Df CFL

p < e, then let Dtp =1 and return (do not proceed with steps 3 and 4 in Section 3.4). Otherwise, let
Df tr

p ¼ Df CFL
p .

3. Compute k ¼ minðfmin=Df tr
p ; kminÞ.

4. If k > 1, then let Df tr
p ¼ max½Df tr

p ;minðfmin=k;xlimðfmax � fminÞÞ�.
5. Compute Df tr

p ¼ minðDfmax;Df tr
p Þ.

Here Dfmax > 0 is the maximum target increment allowed in the simulation, xCFL is the characteristic Courant
number (0 < xCFL 6 1), and kmin, xlim are the factors (kmin > 1,0 < xlim 6 1) that permit local Courant num-
bers larger than xCFL without compromising the solution positivity and monotonicity (steps 3–4). Step 2 of
the above algorithm deactivates idle states ðDf CFL

p < eÞ. It should be noted that even though the above algo-
rithm provides a satisfactory performance in our test cases (see below), it may not represent the optimum
strategy for enabling larger (super-Courant) time increments for all problems. However, it does maintain solu-
tion positivity and monotonicity even when the local CFL condition is violated.

5. DES examples

We validate the DES algorithm on several test models based on Eqs. (1), (5), (6). These examples represent
ubiquitous physical phenomena and demonstrate the power and versatility of the DES paradigm. In each
example we compare the event-driven solution, fDES to either its time-stepped counterpart, fTDS (obtained with
the same temporal discretization scheme) or the known analytical solution, fa. For a simulation of duration,
Tsim with the total number of cells, Ncell (Dx = L/Ncell) and total number of processed events, Nevent we intro-
duce the following effective measure of DES performance efficiency:
Q ¼ Dteff
DES=DtTDS �

N cell � T sim

N event � DtTDS

. ð13Þ
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Here DtTDS is the constant time increment in the corresponding time-stepping (time-driven) simulation. DES
incurs CPU overhead due to event queueing and synchronization operations. In one-dimensional problems
considered in this paper the amount of computation per cell is relatively small compared to this overhead.
As a result, the actual CPU speed-up factor, QCPU in our tests is somewhat lower, QCPU � Q/5. However,
we expect this ratio to significantly improve with further programming optimization and introduction of
higher spatial dimensions.

Let u and v be discrete solutions to Eq. (1). As a measure of their quantitative closeness, we choose the rel-
ative L2 norm error, r(u,v) = ||u � v||2/||v||2. Accordingly, we define three error metrics: rDES ” r(fDES, fa),
rTDS ” r(fTDS, fa) and r ” r(fDES, fTDS). All simulations are performed with double precision. Unless specifi-
cally stated otherwise, in DES runs we employ the monotonicity enforcing algorithm (Section 4.2) with the
following control parameters:
Table
Summ
linear
wave’’

LD–L
ND
LC
ND–L
LD–N
Dfmax ¼ 10�3; kmin ¼ 10; xlim ¼ 0:25; xCFL ¼ 1; e ¼ 0:5� 10�14. ð14Þ

The important configuration parameters for all test cases are summarized in Table 1. In DES runs, we intro-
duce the local update rate, mDES(x) = DtTDS/DtDES(x), where DtTDS is the time-step size used in the time-step-
ping integration and DtDES(xi) ” Dti is the local DES time increment. Typically, we set DtTDS ¼ min sCFL

i . The
only exception is the ‘‘linear convection’’ case where DtTDS is assumed to be limited by special accuracy con-
siderations (see below).

The solution profiles in all but one (‘‘heat wave’’) cases are initialized to be Gaussian, f(x, t = 0) = f0fG(x),
fGðxÞ ¼ expð�ðx� x0Þ2=d2

0Þ, with f0 = 1, d0 = L/20, x0 = L/2 (x0 = L/5 in the ‘‘linear convection’’ case).
Homogeneous Dirichlet boundary conditions (RL = RU = 0,CL = CU = �1) are applied in the steady-state,
‘‘linear diffusion–reaction’’ problem (LD–LR) and homogeneous Neumann boundary conditions (RL = RU =
0,CL = CU = 1) are assumed in all other cases.

5.1. Steady-state, linear diffusion–reaction (D = 10, S = 0.01, u = 0)

Assuming homogeneous Dirichlet boundary conditions, the steady-state solution of the linear diffusion–
reaction equation is easily recovered:
faðxÞ ¼
S

2D
ðLx� x2Þ. ð15Þ
Fig. 3(a) shows a close match between the numerical DES and exact solutions. In this case, in the absence of
inhomogeneity and non-linearity, DES is not expected to offer a performance advantage over explicit time
stepping. However, the DES performance factor, Q = 3.4 is still above unity due to the ability of the self-adap-
tive algorithm to apply local time increments that exceed the CFL limited time-step size. Note that the DES
integration is inherently robust with respect to numerical blow-up instabilities that take place in explicit time-
stepping simulations when the time-step size exceeds the CFL limit. Fig. 3(b) illustrates this point by compar-
ing two event-driven solutions obtained with different constant values of the target increment Df. It shows that
even for unreasonably large values of Df, the DES integration still remains numerically stable, i.e., it produces
a bounded (albeit noisy) solution that is still close to the exact one.
1
ary of configuration parameters for different test cases: (i) linear diffusion–reaction (LD–LR), (ii) non-linear diffusion (ND), (iii)
convection (LC), (iv) non-uniform diffusion–linear convection (ND–LC), (v) linear diffusion–non-linear reaction (LD–NR or ‘‘heat
)

Dx Ncell Tsim DtTDS

R 0.5 200 800.0 1.25e � 2
5e � 3 200 25.0 2.5e � 3
0.25 1200 50.0 2e � 2

C 5e � 3 200 1.25 1.25e � 5
R 0.00625–0.05 120–960 1.0 1e � 4



Fig. 3. The steady-state, linear diffusion–reaction (LD–LR) model: (a) the DES solution with Q = 3.4, rDES = 5 · 10�4 (red), the exact
solution (dashed black), the normalized DES solution update rate, DtCFL/DtDES (blue); (b) two bounded DES profiles obtained with large,
constant values of the target increment Df (red and brown curves), the exact solution (black). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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5.2. Non-linear diffusion (D(f) = 5 · 10�3f 3/2, S = 0, u = 0)

This problem is characterized by a non-linear dependence of the diffusion coefficient. In this case, the traditional
explicit time-stepping techniques have to apply the smallest time-step size determined by the most restrictive CFL
condition in the system, Dt 6 sCFL = KDx2/Dmax (K = 1/2 for the forward Euler scheme), which may result in a
numerically ‘‘stiff’’ integration for strongly non-linear systems. As a result, implicit techniques are often considered
to be the only viable candidates for solving such equations. On the other hand, the DES algorithm proceeds free of
the global CFL restriction by adaptively adjusting the local update rate of solution to the local time scale. This
effectively alleviates the ‘‘stiffness’’ imposed by the system non-linearity. Fig. 4 further illustrates this point. Note
that the update rate envelope matches the spatial variation in the diffusion coefficient profile, with short-scale
Table 2
Summary of relative errors and characteristic time-step sizes for the DES and TDS solutions of the Fischer equation (LD–NR) in the
following format, respectively: rDESðDteff

DESÞ and rTDS(DtTDS)

Ncell 120 240 480 960

DES-R1 0.399 (1e � 2) 0.068 (1.2e � 2) 0.086 (3e � 3) 0.097 (8.5e � 4)
DES-R2 0.362 (5e � 3) 0.034 (8e � 3) 0.019 (1.3e � 3) 0.017 (3e � 4)
TDS-R1 0.418 (1e � 4) 0.210 (1e � 4) 0.057 (1e � 4) 0.014 (1e � 4)
TDS-R2 0.422 (5e � 5) 0.216 (5e � 5) 0.071 (5e � 5) 0.012 (5e � 5)

Fig. 4. The non-linear diffusion (ND) model: the DES solution with Q = 44, r = 8.9 · 10�4 (red), the time-stepping solution (green
crosses) and the normalized DES solution update rate, DtTDS/DtDES (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)



Table 3
Values of the performance factor, Q for DES solutions of the Fischer equation (LD–NR) obtained with different mesh resolutions

Ncell 120 240 480 960

DES-R1 100 120 30 8.5
DES-R2 50 80 13 3
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oscillations being a consequence of adaptive flux adjustments. The regions of zero diffusion automatically remain
free of computation. As a result, the DES run performs at a considerable speed-up, Q = 44.

5.3. Linear diffusion–non-linear reaction (D = 0.01, S = cf(1 � f 2), c = 100, u = 0)

In this test problem we solve the Fisher equation, which describes a general class of ‘‘pulled front’’ problems
that typically occur in diffusion–reaction systems, where steep wave fronts enter spatial regions corresponding
Fig. 5. Comparison of solutions of the Fisher equation (case LD–NR) for different mesh resolutions in run series R1 (Table 2): the DES
solution (red), the corresponding time-stepping solution (green crosses), the exact solution (black), the normalized DES solution update
rate, DtTDS/DtDES (blue). Panels (b), (d), (f) represent the zoomed-in portions of plots (a), (c), (e), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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to unstable equilibrium states [6,28]. The Fisher equation has a smooth analytic solution in the form of a prop-
agating ‘‘heat’’ wave [28]:
Fig. 6.
the co
DtDES
faðx; tÞ ¼ ð1þ ebðx�1�atÞÞ�1
; b ¼ ð1=2Þð2c=DÞ1=2

; a ¼ ð3=2Þð2cDÞ1=2. ð16Þ

We have conducted a number of DES and TDS runs on meshes of different resolutions and compared numer-
ical solutions to exact solution (16). Table 2 contains relative errors and characteristic time increments for all
simulations. Note that each DES run is characterized by the effective time-step size Dteff

DES (defined by Eq. (13)),
which is varied in run series, R1 and R2 by setting the maximum Courant number xCFL to 0.05 and 0.01,
respectively. The only exception is Ncell = 240 case, where we were able to choose xCFL to be 5 times as large
and still achieve an acceptable combination of simulation accuracy and performance.

Separately, in Table 3 we summarize the values of Q obtained in all DES runs. For all meshes considered in
this test problem, the event-driven time integration achieves both a better efficiency and similar or better accu-
racy than the equivalent explicit time-stepping scheme. The DES advantage in this case is due to self-adaptive
adjustment of the local computation update rate in accordance with the moving solution front. This can be
observed by comparing update rate profiles in Figs. 5 and 6 with corresponding values of Q in Table 3. Note
that in order to maintain proper accuracy, the event-driven ‘‘front tracking’’ mechanism automatically adjusts
the update window (the region of non-zero update rate) around the moving position of the wave front.

Interestingly, for the finest mesh Ncell = 960 (Fig. 6), decreasing the Courant number xCFL alone (series R2)
does not result in any improvement in accuracy until the positivity control parameter e is adjusted to a value
much smaller (by a factor of 3) than the double precision round-off value. This adjustment results in expand-
ing the update window on both sides of the front, which leads to a more accurate solution (Fig. 6(b)). The
apparent sensitivity of the solution is a consequence of the wave speed being determined by asymptotically
small solution values ahead of the wave front. This argument has also led to development of flux-limited
higher-order spatial discretization algorithms for similar problems [28]. For the same reason, both the
event-driven and time-stepping simulations performed on the coarsest mesh (Ncell = 120) fail to converge to
the analytical solution (Fig. 5(a) and (b)).

5.4. Linear convection (D = 0, S = 0, u = 1)

This example demonstrates the DES solution of a simple linear convection equation. Note that the reduc-
tion of the maximum value of the convected Gaussian profile (Fig. 7) is caused by the diffusive nature of
scheme (8).

The difference between the TDS and DES solutions in this case is very small, r = 2.8 · 10�3. As in the first
example (linear diffusion–reaction), asynchronous solution updates in this test problem are purely accuracy
Comparison of the finest mesh solutions of the Fisher equation (case LD–NR) in runs R1 (a) and R2 (b): the DES solution (red),
rresponding time-stepping solution (green crosses), the exact solution (black), the normalized DES solution update rate, DtTDS/
(blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 7. The linear convection (LC) model: the DES solution with Q = 7.5, rDES = 4.3 · 10�2 (red), the exact solution (black), the
normalized DES solution update rate, DtTDS/DtDES (blue). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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driven, i.e., local time steps are automatically selected to enforce proper solution increments in all updates.
Accordingly, we calculate the performance factor Q with respect to the minimum time increment obtained
in the DES run, DtTDS = min DtDES, which corresponds to the maximum spatial derivative of the solution pro-
file (Fig. 7). Note that the ‘‘pedestal’’ and central minimum values of the local update rate mDES correspond to
the CFL limited time-step size sCFL.

5.5. Non-uniform diffusion–linear convection (D(x) = fG(x), S = 0, u = 1)

This example combines non-uniform diffusion and linear advection fluxes to demonstrate the flexibility with
which the self-adaptive DES method can handle more complex systems. Fig. 8 illustrates a close match
between the corresponding event-driven and time-stepping solutions.

In this case, a considerable DES performance gain, Q = 35 is due to the alleviation of solution stiffness and
the elimination of unnecessary computation.
Fig. 8. The non-uniform diffusion–linear convection (ND–LC) model: the DES solution with Q = 35, r = 2.7 · 10�3 (red), the time-
stepping solution (green crosses), the diffusion coefficient profile (dotted black), the normalized DES solution update rate, DtCFL/DtDES

(blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusion

We have developed a novel, self-adaptive paradigm for the explicit time integration of multi-scale flux-
conservative equations. In contrast to the traditional explicit and implicit time-stepping techniques, this
method is based on discrete-event simulation technology [23,24]. The DES method presented in this paper
enforces adaptive control over the system evolution by predicting and correcting local increments to the solu-
tion. This results in CPU-efficient, asynchronous, flux-conserving time integration of conservation laws.

As with any explicit integration, DES cannot perform asynchronous calculations with time increments
always violating the local CFL condition. However, time increments in event-driven updates may exceed local
CFL-limited Dt’s without causing instability. The advantage of self-adaptive DES is in its ability to project
and correct changes to the local solution ‘‘on-the-fly’’. For instance, if a local solution state has been scheduled
to be updated with a super-Courant time increment but in the interim (before its scheduled execution time)
receives a ‘‘synchronization call’’ from one of its neighbors, it may ‘‘decide’’ to fully update itself earlier, per-
mitting information to propagate without violating causality, which prevents explosive numerical instability
(see Section 5.1). Formal investigation of the numerical stability of DES will constitute the subject of future
research.

In addition to this and our previous work on particle-in-cell electrostatics [23], we have successfully applied
the DES method to even more complex systems, such as self-consistent hybrid particle-in-cell simulations [29],
where a system of coupled particle motion and Maxwell’s equations is integrated asynchronously via closely
interacting discrete events. All these simulations have demonstrated the robustness (i.e., stability, accuracy)
and efficiency of the DES paradigm. We are currently extending this method in several directions, including
multiple spatial dimensions, coupled systems of diffusion–reaction equations, conservative Navier–Stokes
models and higher order discretizations of the governing equations. In addition, one of our priorities is to
combine DES with adaptive mesh techniques involving block-structured, stretched and unstructured meshes.

An important issue for modern large-scale computational algorithms is their scalability to parallel proces-
sors. The adaptive nature of all asynchronous algorithms naturally leads to a highly heterogeneous work load,
which poses a significant challenge to effective parallelization of multi-scale simulations. The conservative and
time warp parallel synchronization techniques for conventional discrete-event applications constitute a special
field of computer science [25]. We applied similar synchronization approaches to particle-in-cell simulations
[30] and developed a novel preemptive event processing (PEP) method for distributed physics-based DES sys-
tems, in general. The description of the latter technique, along with a discussion of load-balancing strategies
for parallel PDE and particle simulations, will be the subject of a separate paper.
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